

Federal Transit Administration Forum

Asset Management Process and Strategy

Frederick E. Smith, P.E. Acting SVP & Chief Engineer Capital Program Management

NYCT Capital Planning Basics

- 20-Year Needs analysis produced every five years as a legislative requirement.
- Five Year Capital Plan is based on 20-Year Needs analyses.
- Asset inventories are a key part of producing the 20-Year Needs and validating five year plan submissions.

NYCT Capital Planning Process

20-Year Needs Assessment

20-Year Needs Assessment

- MTA/NYCT's long-range capital investment strategy.
- Guides departments when preparing capital and operating budgets.
- Needs-based process, not strictly constrained by funding availability.
- Coordinated with the fiveyear capital plan.

Step 1:

Asset Inventory & Condition Assessment

Asset inventory updated by departments

- Typical asset information includes location, age, most recent capital investment, and condition rating.
- Condition of assets updated with input from maintainers, typically an extract of more detailed maintenance data.
- Determination of whether individual assets are in good repair or not.

Step 2:

Investment Pace and Strategy

- Investment pace and strategy statement required for each investment group (e.g., signals, station rehabilitation).
- Provides rationale/justification for investments.
- Investment pace and strategy also guided by other agency planning efforts.

Step 3:

20-Year Needs Assessment

Final Product

- Strategy of investments in five year increments:
 - Number of units (total, in SGR).
 - Investment projections, in dollars and units.
 - Updated every five years.

Project Delivery Process

Five Year Capital Plan Process

- Projects are included based on priorities set in 20-Year Needs Assessment.
- Inclusion is based on various factors:
 - Operating need
 - Operating budget impacts
 - Asset condition
 - Coordination efficiency
 - Technological obsolescence
 - Regulatory mandates (ADA)
- Detailed project scopes, budgets, and impacts are defined through a project scoping process, which can begin prior to Five Year Plan.
- Outcome of project scoping process informs decisions to advance design and construction.

Computer Systems

Project Status Reporting system (PSR)

- Home-grown client-server system for:
 - Project budgets/milestones.
 - Descriptive notes.
- Asset records an addition to the system.
 - Records are a snapshot of 20-Year Needs process.
 - Project-to-asset linkages for reporting on capital projects from asset perspective.
- Outputs include:
 - Capital program progress to MTA Board.
 - Public "dashboard" information.
 - Federal biennial "satisfactory continuing control".
- Continual enhancements with a dedicated staff of application specialists.

Computer Systems (Cont'd)

- 20-Year Needs and program/project development database.
 - Used by planning & budget personnel.
 - Project information for approved five year plan migrates to agency-wide PSR system.
- Maintenance
 - IT, program areas, operations, and sponsor groups involved in data maintenance – along with planning & budget staff.
 - Cyclical based on five year renewal and update cycle.
 - Federal Biennial reporting requirements.

Cooperative Effort

- Various operating departments and groups.
 - Typically, asset information is an extract of other operating/maintenance data.
 - Staying organized is an effort—tracking responses and working with small asset maintainers.

Four examples of Asset Groups

- Each example has different levels of "sophistication".
- Different levels of detail depending on the maintaining groups and the needs of the capital plan and 20-year needs process.

Example 1: Track and Switches

- 770 miles of track.
 2,400 switches (mainline and yard)
- Multi-leveled inspection and assessment hierarchy; weekly, monthly, quadrennial condition assessment.
- Detailed database by track segment:
 - Defects to be fixed by maintenance.
 - Major issues affecting replacement decisions.
 - Expected remaining useful life.
- Track reconstruction priorities weighed by track access opportunities.

Example 2: Traction Power

- 216 substations; 299 circuit breaker houses; 3,400 miles of power cables.
- Spreadsheet tables updated as needed by sponsor from operating information.
- Asset condition determines SGR status.
- With substations, various components rated separately, informing a component-based investment strategy.
 - -Enclosure
 - -Rectifier(s)
 - -High-tension line-up, etc.

Example 3: Subway Cars

- 6,330 cars in fleet
 - –A-Division: 2,800 cars (numbered lines)
 - –B-Division: 3,530 cars (lettered lines)
- Replacements programmed on 40-year useful life, based on irreparable structural fatigue.
- Detailed investigations influence specific retirement decisions; 42-year-old cars retained while 36-year-old cars with structural deterioration were retired.
- Detailed car-level maintenance records available, but not germane to the fleet-level dynamics that drive the capital programming process.

Example 4: Stations

Assessing the Station Condition

CONDITION ASSESSMENT INSPECTION PROGRAM
For
PASSENGER STATIONS

STATION INSPECTION MANUAL

Revision History

Rev 1 (4/08) – Updated after condition survey of 359 stations for development of database application, added components, new reporting format and miscellaneous items.

March, 2008

Station Inspection Manual

Rev. 1

- First-time condition-based survey of all NYCT station elements.
- Three coordinated consultant teams collected data over 18month period.
- Over 14,000 components were rated, including: stairs, platforms, mezzanines, windscreens, and canopies.
- Engineering consultants identified structure and architectural repair needs on a visual basis.

Example 4: Stations (Cont'd)

Station/Component				Rating Distribution									
Ditmars Boulevard MRN: 1		Total	T										
Line: Astoria	Q	ELV	Units	5	4.5	4	3.5	3	2.5	2	1.5	1	UC
Street Stairs			4			1	1	2					
Interior Stairs			2				2						
Mezzanine Areas:	1												
Ceilings and \	Nalls		1				1						Г
Floors			1				1						
Columns			1						1				
Platform Areas: 1 Island													
Ceilings and \	Nalls		0										
Floors			1					1					
Thru-Spans			1						1				
Columns			1						1				
Platform Edges			2		2								i –
Windscreen			0										
Canopy			1						1				
Vents			0										
Other (ramps, overpasses, piers, embankments)			0										
Total Station Components			15	0	2	1	5	3	4	0	0	0	0

Station/Component													
Hoyt Av-Astoria Blvd MI	RN:	2	Total										
Line: Astoria	Q	ELV	Units	5	4.5	4	3.5	3	2.5	2	1.5	1	UC
Street Stairs			4					3	1				
Interior Stairs			4						4				
Mezzanine Areas:	3												
Ceilings and Walls			3				1		1	1			
Floors			3				1	2					
Columns			3				2	1					
	sland												
Ceilings and Walls			0										
Floors			2						2				
Thru-Spans			2							2			
Columns			2					1	1				
Platform Edges			4				4						
Windscreen			2						2				
Canopy			2					2					
Vents			0										
Other (ramps, overpasses, piers, embankments)			0										
Total Station Components			31	0	0	0	8	9	11	3	0	0	0
			55%	Percent Total Station Components Rated 3 or Worse									

- Structural and architectural conditions rated on a scale of 1 (best) to 5 (worst).
- Station reports with photos and descriptions of components with repair needs.
- Database for components and subcomponents.
- Database will be updated and expanded.

Example 4: Stations (Cont'd)

New Approach

Objectives

Cost-effective

- Maintain components that are still in good condition.

Efficient

- Address more stations in shorter period of time.

Flexible

- Address components individually.
- Design guidelines that reflect efficient spending and the individual needs of each station.

Realistic given funding constraints.

Process

Condition Survey

Maintain living condition database of station components system-wide

Station Rehabilitations

14 legacy comprehensive rehabilitations

Station Renewals

Address all component needs at 25 stations plus improve aesthetics

Component Campaigns

Repair or replacement of individual components

Example 4: Stations (Cont'd)

New Approach

Condition Survey

Station Renewals

Component Campaigns

NYCT's Results

- Successful program formulation and credibility with funding partners built on foundation of good asset management.
- Basic information on the entire capital asset base is very valuable.
 - Leads to fewer surprises in the area of programming / prioritization.
 - Can foresee the size of the problem/scale of the roll-out for any existing or new asset investment.
 - Simple tools like shared spreadsheets can largely meet this need.
- Consistent reporting over time is critical.
 - Changes over time must be explainable by investment, degradation, or obsolescence.
 - Reinvestment/improvement cycles are long, but so is the capital asset decay curve (mostly); a wide swing should be an aberration.

